Source code for libreco.algorithms.youtube_ranking

"""Implementation of YouTubeRanking."""
from ..bases import ModelMeta, TfBase
from ..batch.sequence import get_recent_seqs
from ..feature.multi_sparse import true_sparse_field_size
from ..layers import dense_nn, embedding_lookup, seq_embeds_pooling, tf_dense
from ..tfops import dropout_config, reg_config, tf
from ..tfops.features import compute_dense_feats, compute_sparse_feats
from ..torchops import hidden_units_config
from ..utils.misc import count_params
from ..utils.validate import (
    check_dense_values,
    check_multi_sparse,
    check_seq_mode,
    check_sparse_indices,
    dense_field_size,
    sparse_feat_size,
    sparse_field_size,
)


[docs]class YouTubeRanking(TfBase, metaclass=ModelMeta): """*YouTubeRanking* algorithm. See :ref:`YouTubeRetrieval / YouTubeRanking` for more details. .. NOTE:: The algorithm implemented mainly corresponds to the ranking phase based on the original paper. .. WARNING:: YouTubeRanking can only be used in `ranking` task. Parameters ---------- task : {'ranking'} Recommendation task. See :ref:`Task`. data_info : :class:`~libreco.data.DataInfo` object Object that contains useful information for training and inference. loss_type : {'cross_entropy', 'focal'}, default: 'cross_entropy' Loss for model training. embed_size: int, default: 16 Vector size of embeddings. n_epochs: int, default: 10 Number of epochs for training. lr : float, default 0.001 Learning rate for training. lr_decay : bool, default: False Whether to use learning rate decay. epsilon : float, default: 1e-5 A small constant added to the denominator to improve numerical stability in Adam optimizer. According to the `official comment <https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/training/adam.py#L64>`_, default value of `1e-8` for `epsilon` is generally not good, so here we choose `1e-5`. Users can try tuning this hyperparameter if the training is unstable. reg : float or None, default: None Regularization parameter, must be non-negative or None. batch_size : int, default: 256 Batch size for training. sampler : {'random', 'unconsumed', 'popular'}, default: 'random' Negative sampling strategy. - ``'random'`` means random sampling. - ``'unconsumed'`` samples items that the target user did not consume before. - ``'popular'`` has a higher probability to sample popular items as negative samples. .. versionadded:: 1.1.0 num_neg : int, default: 1 Number of negative samples for each positive sample, only used in `ranking` task. use_bn : bool, default: True Whether to use batch normalization. dropout_rate : float or None, default: None Probability of an element to be zeroed. If it is None, dropout is not used. hidden_units : int, list of int or tuple of (int,), default: (128, 64, 32) Number of layers and corresponding layer size in MLP. .. versionchanged:: 1.0.0 Accept type of ``int``, ``list`` or ``tuple``, instead of ``str``. recent_num : int or None, default: 10 Number of recent items to use in user behavior sequence. random_num : int or None, default: None Number of random sampled items to use in user behavior sequence. If `recent_num` is not None, `random_num` is not considered. multi_sparse_combiner : {'normal', 'mean', 'sum', 'sqrtn'}, default: 'sqrtn' Options for combining `multi_sparse` features. seed : int, default: 42 Random seed. lower_upper_bound : tuple or None, default: None Lower and upper score bound for `rating` task. tf_sess_config : dict or None, default: None Optional TensorFlow session config, see `ConfigProto options <https://github.com/tensorflow/tensorflow/blob/v2.10.0/tensorflow/core/protobuf/config.proto#L431>`_. References ---------- *Paul Covington et al.* `Deep Neural Networks for YouTube Recommendations <https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf>`_. """ user_variables = ("embedding/user_embeds_var",) item_variables = ("embedding/item_embeds_var",) sparse_variables = ("embedding/sparse_embeds_var",) dense_variables = ("embedding/dense_embeds_var",) def __init__( self, task="ranking", data_info=None, loss_type="cross_entropy", embed_size=16, n_epochs=20, lr=0.001, lr_decay=False, epsilon=1e-5, reg=None, batch_size=256, sampler="random", num_neg=1, use_bn=True, dropout_rate=None, hidden_units=(128, 64, 32), recent_num=10, random_num=None, multi_sparse_combiner="sqrtn", seed=42, lower_upper_bound=None, tf_sess_config=None, ): super().__init__(task, data_info, lower_upper_bound, tf_sess_config) assert task == "ranking", "YouTube models is only suitable for ranking" self.all_args = locals() self.loss_type = loss_type self.embed_size = embed_size self.n_epochs = n_epochs self.lr = lr self.lr_decay = lr_decay self.epsilon = epsilon self.reg = reg_config(reg) self.batch_size = batch_size self.sampler = sampler self.num_neg = num_neg self.use_bn = use_bn self.dropout_rate = dropout_config(dropout_rate) self.hidden_units = hidden_units_config(hidden_units) self.seq_mode, self.max_seq_len = check_seq_mode(recent_num, random_num) self.recent_seqs, self.recent_seq_lens = get_recent_seqs( self.n_users, self.user_consumed, self.n_items, self.max_seq_len, ) self.seed = seed self.sparse = check_sparse_indices(data_info) self.dense = check_dense_values(data_info) if self.sparse: self.sparse_feature_size = sparse_feat_size(data_info) self.sparse_field_size = sparse_field_size(data_info) self.multi_sparse_combiner = check_multi_sparse( data_info, multi_sparse_combiner ) self.true_sparse_field_size = true_sparse_field_size( data_info, self.sparse_field_size, self.multi_sparse_combiner ) if self.dense: self.dense_field_size = dense_field_size(data_info) def build_model(self): tf.set_random_seed(self.seed) self.user_indices = tf.placeholder(tf.int32, shape=[None]) self.item_indices = tf.placeholder(tf.int32, shape=[None]) self.user_interacted_seq = tf.placeholder( tf.int32, shape=[None, self.max_seq_len] ) self.user_interacted_len = tf.placeholder(tf.int32, shape=[None]) self.labels = tf.placeholder(tf.float32, shape=[None]) self.is_training = tf.placeholder_with_default(False, shape=[]) user_embed = embedding_lookup( indices=self.user_indices, var_name="user_embeds_var", var_shape=(self.n_users + 1, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) item_embed = embedding_lookup( indices=self.item_indices, var_name="item_embeds_var", var_shape=(self.n_items + 1, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) pooled_embed = seq_embeds_pooling( self.user_interacted_seq, self.user_interacted_len, self.n_items, var_name="item_embeds_var", var_shape=(self.n_items + 1, self.embed_size), reuse_layer=True, scope_name="embedding", ) self.concat_embed = [user_embed, item_embed, pooled_embed] if self.sparse: self._build_sparse() if self.dense: self._build_dense() concat_embed = tf.concat(self.concat_embed, axis=1) mlp_layer = dense_nn( concat_embed, self.hidden_units, use_bn=self.use_bn, dropout_rate=self.dropout_rate, is_training=self.is_training, ) self.output = tf.reshape(tf_dense(units=1)(mlp_layer), [-1]) self.serving_topk = self.build_topk(self.output) count_params() def _build_sparse(self): self.sparse_indices = tf.placeholder( tf.int32, shape=[None, self.sparse_field_size] ) sparse_embed = compute_sparse_feats( self.data_info, self.multi_sparse_combiner, self.sparse_indices, var_name="sparse_embeds_var", var_shape=(self.sparse_feature_size, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, flatten=True, ) self.concat_embed.append(sparse_embed) def _build_dense(self): self.dense_values = tf.placeholder( tf.float32, shape=[None, self.dense_field_size] ) dense_embed = compute_dense_feats( self.dense_values, var_name="dense_embeds_var", var_shape=(self.dense_field_size, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, flatten=True, ) self.concat_embed.append(dense_embed)