Source code for libreco.algorithms.transformer

"""Implementation of Transformer."""
from ..bases import ModelMeta, TfBase
from ..batch.sequence import get_recent_seqs
from ..layers import (
    compute_causal_mask,
    compute_seq_mask,
    dense_nn,
    embedding_lookup,
    multi_head_attention,
    rms_norm,
    tf_attention,
    tf_dense,
)
from ..layers.activation import swish
from ..layers.transformer import ffn, positional_encoding
from ..tfops import dropout_config, reg_config, tf
from ..tfops.features import (
    combine_seq_features,
    compute_dense_feats,
    compute_sparse_feats,
)
from ..torchops import hidden_units_config
from ..utils.misc import count_params
from ..utils.validate import (
    check_dense_values,
    check_multi_sparse,
    check_seq_mode,
    check_sparse_indices,
    dense_field_size,
    sparse_feat_size,
    sparse_field_size,
)


[docs]class Transformer(TfBase, metaclass=ModelMeta): """*Transformer* algorithm. Parameters ---------- task : {'rating', 'ranking'} Recommendation task. See :ref:`Task`. data_info : :class:`~libreco.data.DataInfo` object Object that contains useful information for training and inference. loss_type : {'cross_entropy', 'focal'}, default: 'cross_entropy' Loss for model training. embed_size: int, default: 16 Vector size of embeddings. n_epochs: int, default: 1 Number of epochs for training. lr : float, default 0.001 Learning rate for training. lr_decay : bool, default: False Whether to use learning rate decay. epsilon : float, default: 1e-5 A small constant added to the denominator to improve numerical stability in Adam optimizer. According to the `official comment <https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/training/adam.py#L64>`_, default value of `1e-8` for `epsilon` is generally not good, so here we choose `1e-5`. Users can try tuning this hyperparameter if the training is unstable. reg : float or None, default: None Regularization parameter, must be non-negative or None. batch_size : int, default: 256 Batch size for training. sampler : {'random', 'unconsumed', 'popular'}, default: 'random' Negative sampling strategy. - ``'random'`` means random sampling. - ``'unconsumed'`` samples items that the target user did not consume before. - ``'popular'`` has a higher probability to sample popular items as negative samples. num_neg : int, default: 1 Number of negative samples for each positive sample, only used in `ranking` task. use_bn : bool, default: True Whether to use batch normalization in MLP layers. dropout_rate : float or None, default: None Probability of an element to be zeroed. If it is None, dropout is not used. hidden_units : int, list of int or tuple of (int,), default: (128, 64, 32) Number of layers and corresponding layer size in MLP. recent_num : int or None, default: 10 Number of recent items to use in user behavior sequence. random_num : int or None, default: None Number of random sampled items to use in user behavior sequence. If `recent_num` is not None, `random_num` is not considered. num_heads : int, default: 1 Number of heads in multi-head attention. num_tfm_layers : int, default: 1 Number of transformer layers. positional_embedding : {'trainable', 'sinusoidal'}, default: 'trainable' Positional embedding used in transformer layers. use_causal_mask : bool, default: False Whether to apply causal mask. Causal mask will only attend items before current item, which is used in transformer decoder. feat_agg_mode : {'concat', 'elementwise'}, default: 'concat' Options for aggregating item features used in sequence attention. - ``'concat'`` stands for concatenating all the item features. - ``'elementwise'`` stands for element-wise merge described in Reference[2]. In this case, all item features must have same embed size. multi_sparse_combiner : {'normal', 'mean', 'sum', 'sqrtn'}, default: 'sqrtn' Options for combining `multi_sparse` features. seed : int, default: 42 Random seed. lower_upper_bound : tuple or None, default: None Lower and upper score bound for `rating` task. tf_sess_config : dict or None, default: None Optional TensorFlow session config, see `ConfigProto options <https://github.com/tensorflow/tensorflow/blob/v2.10.0/tensorflow/core/protobuf/config.proto#L431>`_. References ---------- [1] *Qiwei Chen et al.* `Behavior Sequence Transformer for E-commerce Recommendation in Alibaba <https://arxiv.org/pdf/1905.06874.pdf>`_. [2] *Gabriel de Souza Pereira et al.* `Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation <https://dl.acm.org/doi/10.1145/3460231.3474255>`_. [3] *Biao Zhang & Rico Sennrich.* `Root Mean Square Layer Normalization <https://arxiv.org/pdf/1910.07467.pdf>`_. """ user_variables = ("embedding/user_embeds_var",) item_variables = ("embedding/item_embeds_var",) sparse_variables = ("embedding/sparse_embeds_var",) dense_variables = ("embedding/dense_embeds_var",) def __init__( self, task, data_info=None, loss_type="cross_entropy", embed_size=16, n_epochs=1, lr=0.001, lr_decay=False, epsilon=1e-5, reg=None, batch_size=256, sampler="random", num_neg=1, use_bn=True, dropout_rate=None, hidden_units=(128, 64, 32), recent_num=10, random_num=None, num_heads=1, num_tfm_layers=1, positional_embedding="trainable", use_causal_mask=False, feat_agg_mode="concat", multi_sparse_combiner="sqrtn", seed=42, lower_upper_bound=None, tf_sess_config=None, ): super().__init__(task, data_info, lower_upper_bound, tf_sess_config) self.all_args = locals() self.loss_type = loss_type self.embed_size = embed_size self.n_epochs = n_epochs self.lr = lr self.lr_decay = lr_decay self.epsilon = epsilon self.reg = reg_config(reg) self.batch_size = batch_size self.sampler = sampler self.num_neg = num_neg self.use_bn = use_bn self.dropout_rate = dropout_config(dropout_rate) self.hidden_units = hidden_units_config(hidden_units) self.num_heads = num_heads self.num_tfm_layers = num_tfm_layers self.positional_embedding = positional_embedding self.use_causal_mask = use_causal_mask self.feat_agg_mode = feat_agg_mode self.seq_mode, self.max_seq_len = check_seq_mode(recent_num, random_num) self.recent_seqs, self.recent_seq_lens = get_recent_seqs( self.n_users, self.user_consumed, self.n_items, self.max_seq_len, ) self.seed = seed self.sparse = check_sparse_indices(data_info) self.dense = check_dense_values(data_info) if self.sparse: self.sparse_feature_size = sparse_feat_size(data_info) self.sparse_field_size = sparse_field_size(data_info) self.multi_sparse_combiner = check_multi_sparse( data_info, multi_sparse_combiner ) if self.dense: self.dense_field_size = dense_field_size(data_info) self._check_params() def _check_params(self): if self.task == "ranking" and self.loss_type not in ("cross_entropy", "focal"): raise ValueError(f"unsupported `loss_type`: {self.loss_type}") if self.feat_agg_mode not in ("concat", "elementwise"): raise ValueError("`feat_agg_mode` must be `concat` or `elementwise`.") def build_model(self): tf.set_random_seed(self.seed) self._build_placeholders() user_embed = embedding_lookup( indices=self.user_indices, var_name="user_embeds_var", var_shape=(self.n_users + 1, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) item_embed = embedding_lookup( indices=self.item_indices, var_name="item_embeds_var", var_shape=(self.n_items + 1, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) concat_embeds = [user_embed, item_embed] if self.sparse: sparse_embed = compute_sparse_feats( self.data_info, self.multi_sparse_combiner, self.sparse_indices, var_name="sparse_embeds_var", var_shape=(self.sparse_feature_size, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, flatten=True, ) concat_embeds.append(sparse_embed) if self.dense: dense_embed = compute_dense_feats( self.dense_values, var_name="dense_embeds_var", var_shape=(self.dense_field_size, self.embed_size), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, flatten=True, ) concat_embeds.append(dense_embed) self.seq_feats = combine_seq_features(self.data_info, self.feat_agg_mode) seq_embeds = self._build_seq_repr() dense_inputs = tf.concat([*concat_embeds, seq_embeds], axis=1) mlp_layer = dense_nn( dense_inputs, self.hidden_units, activation=swish, use_bn=self.use_bn, dropout_rate=self.dropout_rate, is_training=self.is_training, name="mlp", ) self.output = tf.reshape(tf_dense(units=1)(mlp_layer), [-1]) self.serving_topk = self.build_topk(self.output) count_params() def _build_placeholders(self): self.user_indices = tf.placeholder(tf.int32, shape=[None]) self.item_indices = tf.placeholder(tf.int32, shape=[None]) self.user_interacted_seq = tf.placeholder( tf.int32, shape=[None, self.max_seq_len] ) self.user_interacted_len = tf.placeholder(tf.int32, shape=[None]) self.labels = tf.placeholder(tf.float32, shape=[None]) self.is_training = tf.placeholder_with_default(False, shape=[]) if self.sparse: self.sparse_indices = tf.placeholder( tf.int32, shape=[None, self.sparse_field_size] ) if self.dense: self.dense_values = tf.placeholder( tf.float32, shape=[None, self.dense_field_size] ) def _build_seq_repr(self): # B * K item_embeds = tf.nn.embedding_lookup(self.seq_feats, self.item_indices) # B * seq * K seq_embeds = tf.nn.embedding_lookup(self.seq_feats, self.user_interacted_seq) # item feature dim + position dim output_dim = item_embeds.get_shape().as_list()[-1] + self.embed_size assert output_dim % self.num_heads == 0, ( f"`item_dim`({output_dim}) should be divisible by `num_heads`({self.num_heads})" ) # fmt: skip batch_size = tf.shape(seq_embeds)[0] pos_embeds = self._positional_embedding(batch_size, self.embed_size) seq_embeds = tf.concat([seq_embeds, pos_embeds], axis=2) tfm_mask = self._transformer_mask(batch_size) head_dim = output_dim // self.num_heads for layer in range(self.num_tfm_layers): seq_embeds = self._transformer_layer( seq_embeds, layer, head_dim, tfm_mask, output_dim ) seq_embeds = rms_norm(seq_embeds, scope_name="rms_norm_last") item_embeds = rms_norm(item_embeds, scope_name="rms_norm_item") item_pos_padding = tf.ones(shape=(batch_size, self.embed_size)) item_embeds = tf.concat([item_embeds, item_pos_padding], axis=1) att_mask = tf.sequence_mask(self.user_interacted_len, self.max_seq_len) return tf_attention(item_embeds, seq_embeds, att_mask) def _transformer_layer(self, inputs, layer, head_dim, mask, output_dim): with tf.variable_scope(f"transformer_layer{layer+1}"): x = rms_norm(inputs, scope_name="rms_norm_att") att_out = ( multi_head_attention(x, x, self.num_heads, head_dim, mask, output_dim) + inputs ) x = rms_norm(att_out, scope_name="rms_norm_ffn") ffn_out = ffn(x, output_dim) return att_out + ffn_out def _transformer_mask(self, batch_size): tfm_mask = compute_seq_mask(self.user_interacted_len, self.max_seq_len) if self.use_causal_mask: causal_mask = compute_causal_mask(batch_size, self.max_seq_len) tfm_mask = tf.logical_and(tfm_mask, causal_mask) return tfm_mask def _positional_embedding(self, batch_size, dim): if self.positional_embedding in ("sinusoidal", "sin", "sinusoid"): pos_embeds = positional_encoding(self.max_seq_len, dim, trainable=False) else: with tf.variable_scope("transformer", reuse=tf.AUTO_REUSE): pos_embeds = tf.get_variable( "positional_encoding", shape=(self.max_seq_len, dim), initializer=tf.glorot_uniform_initializer(), trainable=True, ) return tf.tile(pos_embeds[tf.newaxis, :, :], (batch_size, 1, 1))