Source code for libreco.algorithms.rnn4rec

"""Implementation of RNN4Rec model."""
from ..bases import DynEmbedBase, ModelMeta
from ..layers import embedding_lookup, normalize_embeds, tf_dense, tf_rnn
from ..tfops import dropout_config, reg_config, tf
from ..torchops import hidden_units_config
from ..utils.misc import count_params


[docs]class RNN4Rec(DynEmbedBase, metaclass=ModelMeta, backend="tensorflow"): """*RNN4Rec* algorithm. .. NOTE:: The original paper used GRU, but in this implementation we can also use LSTM. Parameters ---------- task : {'rating', 'ranking'} Recommendation task. See :ref:`Task`. data_info : :class:`~libreco.data.DataInfo` object Object that contains useful information for training and inference. loss_type : {'cross_entropy', 'focal', 'bpr'}, default: 'cross_entropy' Loss for model training. rnn_type : {'lstm', 'gru'}, default: 'gru' RNN for modeling. embed_size: int, default: 16 Vector size of embeddings. norm_embed : bool, default: False Whether to l2 normalize output embeddings. n_epochs: int, default: 10 Number of epochs for training. lr : float, default 0.001 Learning rate for training. lr_decay : bool, default: False Whether to use learning rate decay. epsilon : float, default: 1e-5 A small constant added to the denominator to improve numerical stability in Adam optimizer. According to the `official comment <https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/training/adam.py#L64>`_, default value of `1e-8` for `epsilon` is generally not good, so here we choose `1e-5`. Users can try tuning this hyperparameter if the training is unstable. reg : float or None, default: None Regularization parameter, must be non-negative or None. batch_size : int, default: 256 Batch size for training. sampler : {'random', 'unconsumed', 'popular'}, default: 'random' Negative sampling strategy. - ``'random'`` means random sampling. - ``'unconsumed'`` samples items that the target user did not consume before. - ``'popular'`` has a higher probability to sample popular items as negative samples. .. versionadded:: 1.1.0 num_neg : int, default: 1 Number of negative samples for each positive sample, only used in `ranking` task. dropout_rate : float or None, default: None Probability of an element to be zeroed. If it is None, dropout is not used. hidden_units : int, list of int or tuple of (int,), default: 16 Number of layers and corresponding layer size in RNN. .. versionchanged:: 1.0.0 Accept type of ``int``, ``list`` or ``tuple``, instead of ``str``. use_layer_norm : bool, default: False Whether to use layer normalization. recent_num : int or None, default: 10 Number of recent items to use in user behavior sequence. random_num : int or None, default: None Number of random sampled items to use in user behavior sequence. If `recent_num` is not None, `random_num` is not considered. seed : int, default: 42 Random seed. lower_upper_bound : tuple or None, default: None Lower and upper score bound for `rating` task. tf_sess_config : dict or None, default: None Optional TensorFlow session config, see `ConfigProto options <https://github.com/tensorflow/tensorflow/blob/v2.10.0/tensorflow/core/protobuf/config.proto#L431>`_. References ---------- *Balazs Hidasi et al.* `Session-based Recommendations with Recurrent Neural Networks <https://arxiv.org/pdf/1511.06939.pdf>`_. """ item_variables = ( "embedding/item_embeds_var", "embedding/item_bias_var", "embedding/seq_embeds_var", ) def __init__( self, task, data_info=None, loss_type="cross_entropy", rnn_type="gru", embed_size=16, norm_embed=False, n_epochs=20, lr=0.001, lr_decay=False, epsilon=1e-5, reg=None, batch_size=256, sampler="random", num_neg=1, dropout_rate=None, hidden_units=16, use_layer_norm=False, recent_num=10, random_num=None, seed=42, lower_upper_bound=None, tf_sess_config=None, ): super().__init__( task, data_info, embed_size, norm_embed, recent_num, random_num, lower_upper_bound, tf_sess_config, ) self.all_args = locals() self.loss_type = loss_type self.rnn_type = rnn_type.lower() self.n_epochs = n_epochs self.lr = lr self.lr_decay = lr_decay self.epsilon = epsilon self.hidden_units = hidden_units_config(hidden_units) self.reg = reg_config(reg) self.batch_size = batch_size self.sampler = sampler self.num_neg = num_neg self.dropout_rate = dropout_config(dropout_rate) self.use_ln = use_layer_norm self.seed = seed self._check_params() def _check_params(self): if self.rnn_type not in ("lstm", "gru"): raise ValueError("`rnn_type` must either be `lstm` or `gru`") if self.loss_type not in ("cross_entropy", "bpr", "focal"): raise ValueError( "`loss_type` must be one of (`cross_entropy`, `focal`, `bpr`)" ) def build_model(self): tf.set_random_seed(self.seed) self.is_training = tf.placeholder_with_default(False, shape=[]) self._build_variables() self.user_embeds = self._build_user_embeddings() self.serving_topk = self.build_topk() if self.task == "rating" or self.loss_type in ("cross_entropy", "focal"): self.item_indices = tf.placeholder(tf.int32, shape=[None]) self.labels = tf.placeholder(tf.float32, shape=[None]) user_embeds = self.user_embeds item_embeds = tf.nn.embedding_lookup(self.item_embeds, self.item_indices) item_biases = tf.nn.embedding_lookup(self.item_biases, self.item_indices) if self.norm_embed: user_embeds, item_embeds = normalize_embeds( user_embeds, item_embeds, backend="tf" ) self.output = tf.reduce_sum(user_embeds * item_embeds, axis=1) + item_biases elif self.loss_type == "bpr": self.item_indices_pos = tf.placeholder(tf.int32, shape=[None]) self.item_indices_neg = tf.placeholder(tf.int32, shape=[None]) user_embeds = self.user_embeds item_embed_pos = tf.nn.embedding_lookup( self.item_embeds, self.item_indices_pos ) item_embed_neg = tf.nn.embedding_lookup( self.item_embeds, self.item_indices_neg ) item_bias_pos = tf.nn.embedding_lookup( self.item_biases, self.item_indices_pos ) item_bias_neg = tf.nn.embedding_lookup( self.item_biases, self.item_indices_neg ) if self.norm_embed: user_embeds, item_embed_pos, item_embed_neg = normalize_embeds( user_embeds, item_embed_pos, item_embed_neg, backend="tf" ) item_diff = tf.subtract(item_bias_pos, item_bias_neg) + tf.reduce_sum( tf.multiply( self.user_embeds, tf.subtract(item_embed_pos, item_embed_neg) ), axis=1, ) self.bpr_loss = tf.log_sigmoid(item_diff) count_params() def _build_variables(self): with tf.variable_scope("embedding"): # weight and bias parameters for last fc_layer self.item_embeds = tf.get_variable( name="item_embeds_var", shape=[self.n_items, self.embed_size], initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) self.item_biases = tf.get_variable( name="item_bias_var", shape=[self.n_items], initializer=tf.zeros_initializer(), regularizer=self.reg, ) def _build_user_embeddings(self): self.user_interacted_seq = tf.placeholder( tf.int32, shape=[None, self.max_seq_len] ) self.user_interacted_len = tf.placeholder(tf.int32, shape=[None]) seq_item_embed = embedding_lookup( indices=self.user_interacted_seq, var_name="seq_embeds_var", var_shape=(self.n_items + 1, self.hidden_units[0]), initializer=tf.glorot_uniform_initializer(), regularizer=self.reg, ) rnn_output = tf_rnn( inputs=seq_item_embed, rnn_type=self.rnn_type, lengths=self.user_interacted_len, maxlen=self.max_seq_len, hidden_units=self.hidden_units, dropout_rate=self.dropout_rate, use_ln=self.use_ln, is_training=self.is_training, ) return tf_dense(units=self.embed_size, activation=None)(rnn_output)